数学科卒のものぐさナナコのブログ

リケジョというよりリケイ人間、いやむしろ人間と呼んでもらいたい、20代女性です。 https://github.com/aturahc13

(その2)数学科卒が理系社会で上手く楽しくやっていくには

前回の記事(数学科卒が理系社会で上手く楽しくやっていくには - 数学科卒のものぐさナナコのブログ)のパート2です。

 

前回は、

「多くの人は数学は重要だと感じているが、実際何を生かせるのか、当の本人たちもわかっていないことが多いのではないか」

というお話でした。今回は、

「私(筆者)が経験した、工学系分野において数学が生かせた(と思った)例」を紹介します。

次回は「数学科からきて工学系で苦しんだこと」にしようかな…。

 

実際、数学をやっている人に「それは社会では何の役に立つの?」と聞いてしまい(もちろん質問者に悪意があるのではなく話の切り口にしようとしてくれただけ)、きちんとした答えが返ってこずにお互い変な空気になってしまった…なんてこともあるのではないでしょうか。

興味を持ってもらえたとのことなので、大変ありがたいと思うんですが、なかなか直接的に役立つという例は、工学系に比べれば格段に少ないのではないかと思います。

 

そこで今回は、やっぱり完全に具体的には言えないのですが、少しでも役に立った例をお伝えすることで、今現在数学をやっている皆さんへのエールとしたいと思います。

※ちなみに、毎回のように申し上げていますが、あくまで私の完全な主観なのでご了承ください。

 

私が工学系にきてから「数学科で学んでいたことが役立った」と感じたことを書いてみたいと思います。大きく以下の3つです。

(1)数学の知識

(2)数学的思考力・忍耐力

(3)話題作り

 

上から順にいきますね。

(1)数学の知識

これは言わずもがなですね。

例えばアルゴリズム的にすごく複雑な微分計算が必要になったとか、行列の演算を工夫しないといけないとか、そういう時に数学が得意だというのは非常に強いです。

数学自体に抵抗がないということ、またたとえ計算方法そのものを知らなくても、似た分野の計算方法を思い出したり、どの分野の文献を探せばよいのかをぼんやりとでも想像できたりするというのは、けっこうな強みだと思います。

そもそも他の分野ではそうないでしょうが、数学(というか数式?)にはいまだに「検索できない」「検索しにくい」という問題がついて回ります。

というのは論文中の数式などは依然としてテキストデータではなく図形データとして埋め込まれていたりしますから、検索時には自分で書き下す必要があります。そもそも初めて見る演算記号に対しては、何とかしてその読み方を見つけなければなりません。

さらに、その論文が英語で書かれていた場合、もちろん近年の翻訳技術はものすごい勢いで進歩し続けていますが、数式や変数を含むとその精度はガクッと落ちます。結局、自分で書き下さなければなりません。

結局、こうしたちょっとした面倒くさい壁があると、もちろん時間をかければ解決はできるんですが、よっぽど有用な技術であると確信できない限り「なんか数学的に難しい論文」という意識がついてしまいがちです。

そんな時に周りに数学をやっていた人が1人でもいれば、きっと「ちょっとこれ読んでみて」と頼みたくなることでしょう。

 

私は数学科卒が珍しい環境にいたので、こういったちょっとした依頼をもらうことが多く、そのたびに数学の活用先を知ることができ、とても楽しみにしていました。

もちろん知らない演算などもありましたが、けっこう、「どうやって調べれば良いか」の想像はついたりするんですよね。

 

(2)数学的思考力・忍耐力

これはどう名付けて良いのかわからなかったので、なんだかよく聞くような言葉を借りてきてしまいましたが、考え方についてです。

よく「問題は小さくしろ」とか言われますが、数学や、特に証明が好きな人はこれは得意なのではないかと思います。

問題が起きた時に、問題が起きるまでのプロセスを分解して、どこには問題がなくて、どこには問題があるのか、一つ一つ検証して記録していく作業は、数学の(算数の?)検算作業に非常に似ています。

どこまでが足場が固められた理論で、どこまでがまだ固められていないのか集中して考える力や、またその気力や忍耐力は、けっこう、強い人が多いんじゃないかと思います。

また、「ちゃんと背景を確認して、物事が成り立つ理由がわからないと気持ち悪い」という感覚は、自然と、慎重に調査や推論を進める注意深さにもつながっているようにも感じます。「いつ誰が見返しても理解・納得できるような書き方」が数学では求められていますが、そのような書き方の癖は、工学系の論文を書く時のみならず、小さな報告書1つ1つにも生かされることでしょう。

 

(3)話題作り

これは実はかなり美味しかったです。

おそらくこれを読んでいる皆さんは、周りに数学科卒の人が少ないでしょうから、数学好きとして1個キャラを確立することができるのではないかと思います。

この際、思い切り生かしてしまいましょう。

とにかく「好きな数字」とか「好きな定理」とか「好きな数学者」とか、聞いてもらえたら、ラッキー!と思って答えられるようにしておきましょう。

本当に数学に興味があって聞いてくれる人には本当に熱く語れるものを、

そして、ネタとして聞いてくれる人には、それなりに受けそうなネタを用意しておきましょう。

もちろん、このような会話になる前にある程度良い人間関係を築いておきましょう。

これがないと、ただの数学好きな、不気味でとっつきにくい人になってしまいます。

 

 

JDLA G検定 合格者の会に参加します

昨年合格した、日本ディープラーニング協会のG検定の「合格者の会」なるものが都内で7/4(水)に開催されることになっています。

 

私も数週間前にこちらに申し込んでおりまして、参加多数の場合は抽選とも言われていましたが、無事参加できることになりました。

合格者どうしの交流を目的にしているようですが…何人くらい参加するんでしょうか。

 

対象はJDLA Deep Learning for GENERAL 2017、および2018#1合格者とのこと。

(詳細はこちら。

http://www.jdla.org/news/detail/20180427001/)

何はともあれ初めてのイベントなので楽しみです。

 

それはそうと、6/16(土)には第2回G検定が行われたようですね。

実はこのブログへのアクセスが6/15(金)〜6/16(土)になって、一気に伸びておりました(笑)

f:id:neko317fnjt:20180618231512p:image

皆さんラストスパート頑張る派が多いんでしょうかね。

試験受けた方は、お疲れ様でした!

数学科卒が理系社会で上手く楽しくやっていくには

新年度が始まりしばらく経ちましたが、新社会人の皆様はいかがお過ごしでしょうか。

 
今日は、数学科卒でエンジニアになったorなりそうor目指している皆様へ向けて、
理系社会(以下、主に工学系を指すこととします)で上手く数学を使って楽しくやっていくためのアイディアを書きたいと思います。
 
ただし、あくまで私個人の、ほんのわずかな経験談から導き出されたものであるのでご了承下さい。
また私個人は学生時代は工学的なことは一切やってこなかったので、もうすでにそのような分野も経験している人にとっては、読む意味はないかもしれません(^^;)というか、ないでしょう(^^;)
 
(1)数学科卒としてできることあるのか
理系とは言え、皆が皆、数学が大好きなわけではありません。
しかしながら殆どの人が「数学は大事だよね」という認識を持っていることと思います。
なので初対面の人に「数学科卒です」と言えば、
だいたい「理系の基礎だよね」「自分は使う立場でしかなかったので数学そのものよくわからないけど、大事だよね」等、社交辞令含めても嬉しい言葉を返してくれることでしょう。
また1年以上前にはなりますが、2016年12月にfacebookのAIチームを率いていたYann LeCun氏とJoaquin Quiñonero Candela氏は、
AIを学ぶ学生に向け以下のような助言をしています。

"Math. Math. Oh and perhaps some more math."

「数学。とにかく数学。あとは、やっぱり数学だろう」

https://www.google.co.jp/amp/s/techcrunch.com/2016/12/01/facebooks-advice-to-students-interested-in-artificial-intelligence/amp/

さらに読んでいくと、とにかく線形代数と確率統計は早い段階で学んでおけということらしいです。

こういった言葉を聞くと、ちょっと数学科卒でも(数学者の道以外で)生きていけるんじゃないかという勇気がわいてきますね。

さらにさらに、今は論理的思考が求められることが多いので、「数学科卒なんて良いね」とか嬉しいことを言ってくれる人も、いるかもしれません。
 
しかしながら、一度冷静になって
実際に工学分野で自分が何ができるか考えてみると、
ただ単に数学だけをやっていただけではなかなかモノになるものがなかったりします。
例えばプログラミング経験とかがあれば、違うのでしょうが…。
 
そしてそもそも就職活動の時、理系職・技術職に応募したいと思っても
こういう貢献ができます!と言えるものがないので、
ただでさえ自信をなくしがちな就職活動において、
目に見えるスキルや経験がないので自信が持てず
結局、数学は社会の役には立たないからと割り切って行動することになったりします。
 
運良く、実際に数学が使われている例を知ることができたとしても
じゃあ数学科卒の自分ならどういう視点で考えられるとか、
そういう感覚とか、なんとなくの自信を持つというのは、
実はとても難しいことかもしれません。
 
これらの壁を超えていくには、
やはり、相手に陣地に積極的に飛び込んでみるしかないのではないかと思います。
(続く)
 
 
2018/10/15追記: パート2を公開しました!よろしかったらお読みください。

(その2)数学科卒が理系社会で上手く楽しくやっていくには - 数学科卒のものぐさナナコのブログ

 
 
 

バーニーおじさん(日本ディープラーニング協会 G検定を受けてみた)

先週12月16日(土)に、日本ディープラーニング協会が実施する「G検定(ジェネラリスト検定)」という試験を受けてみました♪♪

お金はかかりましたがかなり勉強になりました!

以下は協会公式サイト(http://www.jdla.org/)の情報をもとに書いています。

 

1.日本ディープラーニング協会とは?

2017年10月に発足したばかりの、日本ディープラーニング協会(JDLA)。

ディープラーニング活用の機会を増やし、日本の競争力を高めるのが目的とのこと。

5本の柱のうち1つに「人材育成」が掲げられ、

その取り組みの一部として検定試験が行われています。

 

2.G検定とは?

ディープラーニングを事業に活かすための知識を有しているかを検定する」

ための試験とのことで、今回は以下のような感じでした♪

  • 試験時間…2時間(オンライン)
  • 試験内容…ディープラーニングの基礎知識や関連する社会情勢
  • 試験形式…選択式問題、100問(1問につき複数の回答が求められるものもあり実際に解いたのは233問)
  • 受験料…12,960円(税込)

受験料、結構しましたね(T_T)泣

やっぱりディープラーニング系はどうしても高くなるのでしょうか。

 

推薦図書がこちら。

(1)AI白書 2017  

 (編)独立行政法人情報処理推進機構 AI白書編集委員会 角川アスキー総合研究所

とにかく量がすごい。A4サイズで360ページ、まさに「白書」。

A4が入るカバンがあっても、持ち歩きたくないです。重いから。

画像・音声・言語処理をはじめとする各分野での発展の現状、社会的動向など。

体系的に幅広く学ぶことができます。

全ページにぎっっっしり文章がつまっています。

単語検索したいのでPDF版がほしいですが、カンニングを助長してしまうので難しいでしょうか。

3,564円(税込)。


(2)人工知能は人間を超えるか ディープラーニングの先にあるもの

角川EPUB選書 (著)松尾 豊 KADOKAWA

→こちらは新著版の読み物という感じで(B6判ですが)、264ページ。

人工知能やその扱われ方、あり方について歴史をたどって書かれています。

色々なエピソードや議論の様子を知ることができ、興味深く読みました。

1,512円(税込)。

 

(3)機械学習 

プロフェッショナルシリーズ (著)岡谷 貴之 講談社

→おそらく関係者の中では言わずと知れた「青い本」。

理論の説明が主で、数式が出てきます。

紙と鉛筆を用意して読むのが良いのでは。A5判。

3,024円(税込)。

 

以上、推薦図書で8,100円、受験料込みで21,060円でした。

高いとも言えますが、

今まで素人流にニュース記事や技術文書を読みつまみ、必死に体系化して飲み込もうとしていたところを、

きれいにまとめた状態で教えてもらうことができ、大変良い機会だったと思っています。

また、今まで使っていた言葉の定義をきちっと勉強することができ、

もやが晴れるような気分でもありました。

何といってもこれらが日本語でまとめられているところも大変ありがたいですね。やっぱり母国語だとスラスラ読めます。

 

3.感想

時間が足りなかったです(T_T)

120分で233問なのでおおよそ1問30秒!

私はディープラーニングについては以前から少しだけやったりしていたので

おおよその枠組みは理解できているかと思っていたのですが

まだまだ理解し切れていないなと感じました。

でも「よく聞くけど実はきちんと理解し切れていない言葉」「きちんと説明できない言葉」

をほんの少し理解できるようになったかなと思いました。

 

受験対象者に経営者も含まれていたと思いますが、

ディープラーニング研究者と誤解なく(過大・過小評価なく)

コミュニケーションを取れるような、基盤作りの一歩となると思います。

 

ちなみに数式はほとんど出てきませんでした。

強いて言えば、二次多項式偏微分する問題が一問出ただけ。

偏微分を知らない方は勉強が大変かもしれませんが、

今回は一問だけなので、今後も同様の傾向が続くのであれば

数式には手をつけずにほかに注力しても良いかもしれませんね。

 

恐らくG検定はジェネラリストの検定なので、

数式含む理論や実装の部分は「E検定(エンジニア検定)」で行うんでしょうね。

こちらは2018年4月予定のようです。受けてみたいと思います。

 

それでは、また。

 

追記:

無事合格しました(12/26)。

受験者1448人、合格者823人とのこと。

合格率は56.8%ですね。E検定に向けて頑張りたいと思います。

matlab mobileをインストールしてみた

matlab  mobileをiPhoneにインストールしてみました。

アプリ自体は無料、Mathworksのアカウントがあってネット接続がされていれば、その場でコード実行できるようです。

 f:id:neko317fnjt:20170103131633p:image

↑  iPhoneでちまちま手打ち…

f:id:neko317fnjt:20170103132251j:image

↑  用意されているフォルダたち。

f:id:neko317fnjt:20170103132714p:image

↑  iPhoneのセンサも使える模様。この数値もリアルタイムに動いています。これは面白そう〜

f:id:neko317fnjt:20170103191128p:image

↑  グラフももちろん作成できます。

 

センサを生かして、何かしらに使ってみたいですね。夢が膨らみます!

 

数学科がもたれるイメージ(経験談)

今回は数学について数学専攻以外の人からどのように思われているか、

それに対する思い・・・等を、私の経験談からお話しします。

※あくまで、私の経験談であり、私の意見ですのでご注意ください。

 

もちろん社会に出てからも数学科出身という目で見られることは多いですが、

やはり「専攻分野」という観点で人を見る・見られるのは学生時代が一番多かったので

学生時代の話が多くなります。

 

私の大学は総合大学でしたので、文系理系やその他ありとあらゆる学科がそろっていました。

その中で数学科というと、

①「数学」という中学高校と慣れ親しんで(?)きた主要5科目の1つ(名称が同じ)

であるにも関わらず、

②大学で学問として扱われている

という2つのイメージがうまく融合されず、

何をやっているのかわからないというイメージを持たれることが多かったです。

 

他の学科の人からよく受けた質問やコメントを紹介します。

(1)自分は数学は大嫌いだった/苦手だった

これはけっこう言われました。嫌いと苦手は同意義ではないとは思うんですが、こう言われたら、数学の話はしないでおこうと心にとめておきます。まずはその人と仲良くなりたいので数学以外の話題で仲良くなります。

本当は「数学」が何を指すかにもよるんでしょうけど。

世の中のドラマや漫画を見ても、主人公が赤点をとる教科って高確率で数学ですよね…^^;

やっぱり、社会系が壊滅的にできないと常識も人間力もなさそうに見えるけど

数学ができないくらいなら可愛げがあるように見えるのでしょうか。(わからなくもない)

 

(2)どのような勉強をしているのか?

「毎日ものすごい計算をしているのか?」「図形や数式を見て『美しい…』とつぶやいているのか?」等の質問を受けることも多くありました。

分野によりますけど、映画に出てくる数学者のように「何かに取り憑かれたかのように数式を書き殴る」人は滅多にいません。

数式に美しさを感じる人はいますが、わざわざ人前で「美しい…」とか呟く人は現実にはなかなかいないと思われます。もしいたとしたら、よっぽど貴方に心を許しているということでしょう。

 

(3)好きな数字は?

これもよくありました。こうやって数学の話を振ってきてくれるのは非常にうれしいです。

しかし、数学科として意識の低い私には「好きな数」なるものはありませんでした。(好きな定理はあったんですけどね)

せっかく数学の話題を振ってくれたのに答えられないのは申し訳ないので、一時期はそれっぽい素数を調べてきて、それを答えていました^^;

ちなみに今は2です。

 

(4)(飲み会で)計算お願い!

計算は苦手な人が多いです。普段は数字より文字の方が扱う時間が長かったりしますしね。携帯の電卓が一番良いのではないでしょうか。

しかし、(酔ってても)注意深く計算する力はあるのかもしれません。

 

(5)4次元について教えて!

 これは、物理学科(偏見あるかも…違ったら教えてください)に聞いた方が良いのではないでしょうか。

数学科でも4次元を扱うことはありますが、多くの場合、一般的な「n次元」のうちのn=4の場合という扱われ方です。

私としては正直、4次元のものを扱うとしても、4次元目が時間軸である必要性を感じません。

  

ちなみに、数学について質問を受けて

何かしら話すことになった場合、こう尋ねるようにしています。

「数学は好き?嫌い?得意?苦手?」

 

たいてい回答は3つに分かれます。

(1)けっこう得意!!

数学が好きで得意な人は、このように堂々と答えることが多いです。

こういう人は、わからなくなった時はその瞬間に

「何がわからないのか」を把握できる人が多く、すぐに質問がきます。

数学的な言い回しの方が伝わりやすいので、数学科の人に話すつもりで、とにかく矛盾や条件漏れがないように気を付けながらお話しします。

 

(2)得意じゃないけど好きだよ!or苦手だけど興味はある!

数学は好きな人には、なぜその数式を使うのかとか、そういうのを簡単に伝えるようにしています。

あとは、「〇〇の分野でも使われているみたい」とかの実例や小話ですね。

今までの経験上、何か1つでも心から「わかった」と思えるような

数学的な小話や工夫箇所を伝えると、覚えてもらいやすいのかなという気がしています。

 

(3)苦手かな…

これは「嫌い」とほぼ同じ意味と捉えてます。

さすがに数学をやっている人を目の前にして「嫌い」とは言えず、気を遣ってくれたのでしょう。

この場合、できるだけ手短に説明することにします。「複雑だから説明は省くけど、〇〇の定理というのを使えば、簡単に計算ができる」というふうに。

 

でも、複雑さの度合いでいえば、他の学科(数学を活用する分野)の方が複雑だったと思います。

例えば工学系の微分方程式とか、すごい複雑でしたね。

「数学科の方がもっとすごいことやってるでしょ?これ解いてくれない?」

とかよく言われましたが、数学科の方は大抵、解きやすく作られていますから…

 

以上、他から見た数学科イメージ(体験談)をお伝えしました。

偉そうに書いてしまいましたが、なんだかんだ数学は応用分野が広いので、色んな分野の人に、良くも悪くも興味を持ってもらえて嬉しかったですね。

それでは、また。

自己紹介など

大学で数学を学び、今は技術職に就いています。

当時学んでいた最中には気づかなかった、社会での数学の使われ方も多く、

日々新たな一面を発見しています。

 

数学についてのつぶやきも

書いていきたいと思いますが、まだまだ勉強中なので…

ご指摘等あったらよろしくお願いします。

ちなみに20代女性です。